Stable Roommates Matchings, Mirror Posets, Median Graphs, and the Local/Global Median Phenomenon in Stable Matchings

نویسندگان

  • Christine T. Cheng
  • Anhua Lin
چکیده

For stable marriage (SM) and solvable stable roommates (SR) instances, it is known that there are stable matchings that assign each participant to his or her (lower/upper) median stable partner. Moreover, for SM instances, a stable matching has this property if and only if it is a median of the distributive lattice formed by the instance’s stable matchings. In this paper, we show that the above local/global median phenomenon first observed in SM stable matchings also extends to SR stable matchings because SR stable matchings form a median graph. In the course of our investigations, we also prove that three seemingly different structures are pairwise duals of each other – median graphs give rise to mirror posets and vice versa, and mirror posets give rise to SR stable matchings and vice versa. Together, they imply that for every median graph G, there is an SR instance I(G) whose graph of stable matchings is isomorphic to G. Our results are analogous to the pairwise duality results known for distributive lattices, posets, and SM stable matchings. Interestingly, they can also be inferred from the work of Feder in the early 1990’s. Our constructions and proofs, however, are smoother generalizations of those used for SM instances.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The center stable matchings and the centers of cover graphs of distributive lattices

Let I be an instance of the stable marriage (SM) problem. In the late 1990s, Teo and Sethuraman discovered the existence of median stable matchings, which are stable matchings that match all participants to their (lower/upper) median stable partner. About a decade later, Cheng showed that not only are they locally-fair, but they are also globally-fair in the following sense: when G(I) is the co...

متن کامل

The Popular Roommates problem

We consider the popular matching problem in a roommates instance G = (V,E) with strict preference lists. While popular matchings always exist in a bipartite instance, they need not exist in a roommates instance. The complexity of the popular matching problem in a roommates instance has been an open problem for several years and here we show it is NP-hard. A sub-class of max-size popular matchin...

متن کامل

Random stable matchings

The stable matching problem is a prototype model in economics and social sciences where agents act selfishly to optimize their own satisfaction, subject to mutually conflicting constraints. A stable matching is a pairing of adjacent vertices in a graph such that no unpaired vertices prefer each other to their partners under the matching. The problem of finding stable matchings is known as the s...

متن کامل

Median Stable Matching for College Admissions

We give a simple and concise proof that so-called generalized median stable matchings are well-defined for college admissions problems. Furthermore, we discuss the fairness properties of median stable matchings and conclude with two illustrative examples of college admissions markets, the lattices of stable matchings, and the corresponding generalized median stable matchings. JEL classification...

متن کامل

Bistable Versions of the Marriages and Roommates Problems

A stable matching for an instance of the stable marriages problem or the stable roommates problem is bistable if it is also a stable matching when the ordering of the input preference lists is reversed. For the stable marriages problem, it is shown that the bistable matchings are a sublattice of the distributive lattice of stable matchings. In addition, the Gale Shapley algorithm is modified to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Discrete Math.

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2011